

Gravitational-wave detectors in the next decade(s)

Matteo Barsuglia

CNRS – Laboratoire Astroparticule et Cosmologie (barsuglia@apc.univ-paris7.fr)

The big picture 2018-2028 2015 - 2020 2020 - 2025 2030 - 2035 2035 - 2060 2025 - 2030 Adv Virgo/LIGO Advanced detectors (AdV started in 2017) Upgrades pending **KAGRA** AdV+/LIGO A+ LIGO India Online as A+ instrument Conceptual phase Voyager/A++ Einstein Telescope Cosmic Explorer Pathfinder LISA LISA Legend: Preparation Start/Launch Data taking

The status during 02

Localization: GW140817 – Binary black hole

Localization: GW170817– Binary neutron star

O2 sensitivities

« Horizon » = 2.3 x « range »

Virgo ~ 60 Mpc Livingston ~ 220 Mpc Hanford ~ 110 Mpc

Virgo performances

Virgo ranges: 2017/08/01 -> 2017/08/25 -- now: 2017/08/26 21:55:13 UTC

DUTY CYCLE: 85% LONGEST LOCK STRETCH: 69 hours HIGHEST BNS RANGE: 28.2 Mpc AVERAGE RANGE: BNS 26 - BBH₁₀ 134 - BBH₃₀ 314 Mpc

Virgo sensitivity

Virgo sensitivity

03 preparation

Three phases in the detector life

- "Construction": detector lock for hours
 - LIGO: march 2015
 - Virgo: end 2016
 - KAGRA: early 2019

(LIGO India not operational before 2024)

- "Commissioning": improvement of the sensitivity
 - Scheduled improvements
 - Tackling unexpected problems
- "Observing run(s)": scientific data
 - Cost-benefit commissioning/Observing

Commissioning/installation plans

Credit: Alessio Rocchi

Observing runs and sensitivities

Living Rev Relativ manuscript No. (will be inserted by the editor)

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA

Abbott, B. P. et al. (KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration)

Received: September 11, 2017/ Accepted:

Virgo sensitivity curve

Upgrade between O2 and O3 in detail

- Replace steel wires with fused silica wires
 - Reduce suspension thermal noise
- Increase laser power
 - Reduce quantum noise (at high frequency)
- Use frequency dependent squeezing
 - Reduce quantum noise (at high frequency)

Goal: ~ 60 Mpc (max is 100 Mpc) factor ~ 2 wrt 02 (goal for LIGO ~ 120 Mpc)

Virgo / Fused silica fibers

Squeezed light injection

After 03

Virgo/LIGO plans > 2019

Sensitivities after 03

Advanced Virgo sensitivity

Upgrades between 03 and 04

The role of the thermal noise coating and mirror size

KAGRA

Ranges

	LIGO		Virgo		KAGRA	
	BNS range/Mpc	BBH range/Mpc	BNS range/Mpc	BBH range/Mpc	BNS range/Mpc	BBH range/Mpc
Early	40-80	415-775	20-65	220-615	8-25	80-250
Mid	80 - 120	775 - 1110	65 - 85	615 - 790	25 - 40	250 - 405
Late	120 - 170	1110 - 1490	65 - 115	610 - 1030	40 - 140	405 - 1270
Design	190	1640	125	1130	140	1270

The new infrastructures

Einstein Telescope (and US Cosmic Explorer)

The big picture (again, as a summary)

