

Galactic gamma-ray sources

Marianne Lemoine-Goumard CENBG – Université de Bordeaux CNRS-IN2P3

+ input from the Task force (Fabio Acero, Pierrick Martin & Andreas Zech)

Outline

- What we have learnt and what we haven't learnt yet?

Supernova remnants Superbubbles & Star forming regions Pulsar wind nebulae Binaries PeVatrons

Diffuse emissions

- What are still missing to improve our understanding

Models & Theory

Instruments : CTA, HAWC, LHAASO, e-ASTROGAM/AMEGO

Complementarity of gamma-ray instruments

- Space-based detectors - continuous full-sky coverage from MeV to GeV

- Ground-based detectors have TeV sensitivity

• Excellent energy and angle resolution, but FoV of 0.003 sr and duty cycle of 10%

 \cdot Particle detectors have an aperture > 2 sr and duty cycle of 90% but angular resolution of ~0.6° (@ 1 TeV)

What we have learnt & what we haven't learnt yet

Supernova remnants : results

- Detection of the historical remnants Cassiopeia A & Tycho
- Detection of the 5 TeV shell-type SNRs with Fermi : RX J1713.7-3946, Vela Junior, SN 1006, RCW 86 & HESS J1731-347
- Detection of the « pion bump » feature in 4 different middle-aged remnants (W44, IC443, W49B & W51C) & in Cas A
- Detection of escaping cosmic-rays in W28 & W44; maybe also in the young remnants RX J1713.7-3946 & HESS J1731-347
- New shells detected at GeV and TeV energies : G150 detected with the FGES Catalog, & HESS J1534-571 associated with G323.7-1.0

Supernova remnants : open questions

- Non-detection of SN1987A by HESS implies that < 1% of $E_{_{SN}}$ is injected into CRs => when does the shock becomes efficient ?
- Detection of a cut-off at 12 TeV on Cas A by MAGIC => protons already left the system ? Or the maximum energy was reached in the past ?
- Cas A and Tycho are well reproduced with proton index of ~2.3 : magnetic field amplification ? effect of neutrals at the acceleration region ?
- Evidence of asymmetry in SN 1006 (SW region not detected) : effect of neutrals ?
- Breaks visible for all middle-aged remnants with energies between 1 and 100 GeV : what is the origin of this large interval ? The time since first interaction with the cloud ? A transition between fresh acceleration to reacceleration (example : non-detection of W44) ?

Superbubbles & Star forming regions : results

- Detection of the Cygnus Cocoon with the LAT ; association proposed for the ARGO source J2031+4157
- Detection of the superbubble 30 Doradus C in the LMC with HESS (largest known X-ray synchrotron shell): hadronic scenario implies high density and low diffusion coefficient
- Several candidates detected (to be confirmed): Westerlund 1, Westerlund 2, G25, NGC3603

M. Lemoine-Goumard, CFRCOS, March 26, 2018

Superbubbles & Star forming regions : open questions

- Most core-collapse SNRs are located in star forming regions & superbubbles : how can we explain that very few are detected in gamma-rays ?
- What happens to CRs freshly escaping from their accelerators? Are they
 confined for some time and potentially re-accelerated in the highly turbulent
 medium of star forming regions? What impact do they have on the
 surrounding ISM? Up to which energy are they re-accelerated?
- Cygnus Cocoon : are we seeing a collective effect (superbubble) or a single SNR ?
- If associated to Cygnus Cocoon, ARGO J2031+4157 sets a maximum energy of 150 TeV on the proton spectrum. Superbubble are not PeVatrons? Or PeV particles already left?
- Star forming region W49A not detected : shocks expected from interacting or collective stellar winds appear not very effective (in comparison to SNR W49B)?
- M. Lemoine-Goumard, CFRCOS, March 26, 2018

Pulsar wind nebulae : results

- Most numerous class of VHE galactic source (34 referenced in TeVCat => ~20% of all sources)
- Few young and energetic nebulae : e.g. N157B (associated to PSR J0537–6910 in the LMC) is the most luminous PWN to date (x 20 in comparison to the Crab)
- Detection of the Crab flares ; the most powerful (April 2011) implied a factor 30 in luminosity, B \sim few mG \gg 200 μ G, and PeV pairs
- A large fraction of the gamma-ray PWNe are relic nebulae very faint at other wavelengths (could explain part of the UNIDs)
- Detection of an extended TeV source spatially consistent with Geminga by HAWC

Pulsar wind nebulae : open questions

- Very extended emissions from HESS J1825-137 & Vela-X detected by the LAT: rapid diffusion of high-energy electrons ? > 1000 times faster than Bohm diffusion ?
- Geminga as seen by HAWC : diffusion much slower than usually assumed ?
- Crab flares : detection of synchrotron emission up to 375 MeV => magnetic reconnection ? Where does it operate exactly ?
- Vela-X cocoon : very hard LAT spectrum (~1.0) : is it also due to magnetic reconnection ?

Binaries : results

- Detection of high-mass gamma-ray binaries (e.g. LS 5039 detected at GeV and TeV energies); most luminous gamma-ray binary to date detected in the LMC
- Detection of microquasars (Cyg X-1 and Cyg X-3) with the LAT ; 4.9σ (pre-trial on Cyg X-1 with MAGIC
- Detection of novae with the LAT; no TeV detections up to now
- Detection of the colliding-wind binary Eta Carinae with the LAT and H.E.S.S.
- => large variety of sources proves that particle acceleration is much more widespread than would have been considered a decade ago

Binaries : open questions

- Why do some binaries emit high-energy emission and others do not?
- Does that mean that the conditions are special in detected systems (because a strong shock is present, or because particle acceleration is somehow stunted in the others ?)
- How much do these different source types contribute to the CR spectrum? If so, up to which energy?
- Are they all mostly electron accelerators ?
- What is the maximum energy reached at these shocks?

PeVatrons : results

- No SNRs detected as PeVatron up to now
- Detection of a PeVatron at the Galactic center with H.E.S.S.
- Several PeVatron candidates detected by H.E.S.S.: unidentified sources HESS J1641-463, HESS J1741-302, HESS J1826-130
- First release by HAWC of sources detected above 50 TeV : MGRO J2019+37, MGRO J1908+06, HESSJ1825/HESSJ1826

PeVatrons : open questions

- Do young shell-type SNRs accelerate hadronic cosmic rays up to PeV energies ? If so, up to which energies and how effective is this acceleration ?
- Does the PeVatron at the Galactic center contribute significantly to the CR spectrum or to the populations of massive stars/SNRs there? If so, in which energy interval?
- PeVatron candidates detected by H.E.S.S. or HAWC are electron or proton accelerators ?

Diffuse emissions : results

- Detection of the Fermi Bubbles with the LAT: two large structures in gamma-rays up to 50° above and below the Galactic center
- Detection of Loop I, a radio continuum loop spanning across 100° on the sky
- Precise view of the Galactic Diffuse background with the LAT
- Detection of the Galactic diffuse background with H.E.S.S.
- Detection of a gamma-ray excess at the Galactic center
- Detection of diffuse emission from external galaxies (LMC, SMC, M31,...)

Diffuse emissions : open questions

- What is the origin of the gamma-ray excess in the inner galaxy?
- Why is the LMC diffuse emission apparently so different from that of the Milky Way ?
- Is there a link between the Fermi bubbles and Loop I ? If so, do they both originate from past activity in the GC ?

A: conclusions

Very large variety of sources proves that particle acceleration is much more widespread than would have been considered a decade ago

Only one robust detection of a Galactic PeVatron but several candidates still need to be identified : sources confusion is a real issue

CR transport still not under control (diffusion coefficient not constrained) Several electron PeVatrons detected associated to PWNe : remain one of the best acceleration site (for electrons). What about gamma-ray binaries ? What is still missing to improve our understanding : Models, Theory & Instruments

Models & Theory (I)

One-zone models are not sufficient to reproduce MWL data => Models on sub-regions with associated MWL data are crucial

RX J1713.7-3946 : 4σ in favour of different spectra East vs West

SN 1006 :

Models & Theory (II)

One also need to take into account the whole history of the SNR shock via CR-hydro-NEI codes for instance

- => example of RX J1713.7-3946 that needs a break at 17 GeV in the electron population. Due to a higher B field at earlier times ?
- => see Slane et al. 2014 for Tycho which estimates an energy of 16% E_{SN} (instead of ~3% for simple one zone models)

M. Lemoine-Goumard, CFRCOS, March 26, 2018

Models & Theory (III)

Two main scenarios for middle-aged remnants : escape or direct interaction How much relic particles are still left in middle-aged remnants ? How would they affect the primary CR spectrum and the corresponding gamma-ray emission ?

Need to take into account both the particles escaped from the remnant and those being confined at the SNR

=> Hybrid model involving both scenarios

Future instruments

20, 20,	301 301	20.	20'	201	20-	201	201	201	201
👄 CTA Pr	rototypes 👄			Science V	erification	User Oper	ration	- 22	
ow Frequency Radi	io		1	1				÷	
LOFAR				1					
MWA	MWA	(upgrade)			1			1	
VLITE on JV	LA ->	(~2018? LOB	0)						
lid-Hi Frequency Ra	adio	FAST							
JVLA, VLBA, eMerli	n, ATCA, EVN, JVN, KV	N, VERA, LB.	A, GBT(m	any other sn	naller facilitie	5)			
ASKAP				-			1	1	
Kat/ -> MeerKAT	> SKA Phase 1			1			+		10
sub)Millimeter Badio				SKA	1&2 (Lo/Mid	9		.,	
JCMT, LLAMA, LM	T. IRAM, NOEMA, SM	A, SMT, SPT, N	ianten2, Moj	pra, Nobeyas	ma (many	other smaller	facilities)		
ALMA			a new allowed			- and the second	Contract of		
EHT	(prototype -> full o	ops)							
Dotical Transient Fa	ctories/Transient F	inders	1	1	1				
iPalomar Transient Fo	actory -> (~2017	Zwicky TF	-		T (baildup te	full survey (node)		1
PanSTARRS1 -> Pa	mSTARRS2			100	(culturp it	Tuit survey I	invite)		1
	BlackGEM (Me	erlicht single di	ish prototype	in 2016)				1	
Optical/IR Large Fac	ilities	2		1	5 - 57				
VLT, Keck, GTC, Ger	mini, Magellan(many o	other smaller fa	acilities)					1	-
									and the second second
HST			IWST	197		-			WFIRST
HST		- 0	JWST		: 6	FIT dall and	ration 1014).	A TMT (rim	GMT
(-ray		-	jwst	l	6	ELT (full ope	ration 2024)	& TMT (time	GMT eline less clear
(-ray) Swift (incl. UV/optica	6	-	JWST	I		ELT (full ope	ration 2024)	& TMT (time	GMT eline less clear
HST Swift (incl. UV/optica XMM & Chandra NuSTAR	0	0	JWST		(IXPE	ELT (full ope	ration 2024) (& TMT (time	GMT eline less clear
HST Swift (incl. UV/optica XMM & Chandra NuSTAR	d) STROSAT	0	jwst			ELT (full ope	ration 2024)	& TMT (time	GMT eline less clear
HST Swift (incl. UV/optica XMM & Chandra NuSTAR	STROSAT	G	jwst		(IXPE	ELT (full ope	cration 2024)	* TMT (time	GMT eline less clear
HST Swift (incl. UV/optica XMM & Chandra NuSTAR	d) STROSAT		jwst		(IXPE	ELT (full ope	ration 2024)	š TMT (time	GMT eline less clear
HST Swift (incl. UV/optica XMM & Chandra NuSTAR	d) STROSAT		jwst			ELT (full ope	ration 2024)	& TMT (time	WFIRST GMT eline less clear ATHENA
HST Swift (incl. UV/optica XMM & Chandra NuSTAR	d) STROSAT		jwst		(IXPE	ELT (full ope	ma-ray + opt	& TMT (time	GMT CATHENA CATHENA dements
HST Swift (incl. UV/optica XMM & Chandra NuSTAR NuSTAR A A A A A A A A A A A A A	J) STROSAT		jwst		(IXPE (XAI (SYOM (ELT (full ope	ma-ray + opt	& TMT (time	GMT CATHERA CATHERA demensy
HST Swift (incl. UV/optica XMM & Chandra NuSTAR NuSTAR (A itamma-ray INTEGRAL Fermi HAWC	b) STROSAT	er er) TA		(IXPE (XAI (SVOM (ELT (full ope	ma-ray + opt	& TMT (time	GMT CATHERA CATHERA dements
HST Swift (incl. UV/optica XMM & Chandra NuSTAR NuSTAR A A A A A A A A A A A A A	DAMPE	er er) TA		(IXPE (XAI (SVOM (ELT (full ope	ma-ray + opt	& TMT (time	GMT CATHENA Contents Contents
HST -ray Swift (Incl. UV/optica XMM & Chandra NuSTAR NuSTAR A A A A A A A A A A A A A	DAMPE	ATT ER Celesson	JWST		(IXPE (XAI (SVOM (ELT (full ope RM incl. soft gam	ma-ray + opt	& TMT (time	GMT CATHENA Contents Contents Contents
HST -ray Swift (incl. UV/optica XMM & Chandra NuSTAR NuSTAR A idenmia-ray INTEGRAL Fermi HAWC iray. Wayes	DAMPE		JWST		(IXPE (XAI (SVOM (ELT (full ope RM incl. soft gam	ma-ray + opt	& TMT (time	(WFIRST GMT eline less clear (ATHENA clemients) : (ATHENA (ALE+) (ALE+)
HST Swift (incl. UV/optica XMM & Chandra NuSTAR Austral INTEGRAL Fermi HAWC Advance	DAMPE	RGO (2017)	JWST		(IXPE (XAI (SVOM (ELT (full ope RM incl. soft gam	ma-ray + opt	& TMT (time	GATTERNA GATTERNA Genternes (2025+) Einstein
HST Swift (incl. UV/optica XMM & Chandra NuSTAR Austral INTEGRAL Fermi HAWC Advance Journes	DAMPE	RGO (2017)	JWST		(IXPE (XAI (SVOM (ELT (full ope RM incl. soft gam] GO India—)	ma-ray + opt	& TMT (time	GATTERNA GATTERNA Genternes) (ATTERNA Genternes) (ATTERNA Genternes)
HST -ray Swift (incl. UV/optica XMM & Chandra NuSTAR NuSTAR (A isc.mha-ray INTEGRAL Fermi HAWC integral Advance loutrinos	DAMPE	RGO (2017)	JWST		(IXPE (XAI (SVOM (ELT (full ope RM incl. soft gam] GO India—)	ma-ray + opt	& TMT (time	GMT GMT eline less clean cleanents) cleanents) Elentents leeCube-Gen JEMENET
HST Swift (incl. UV/optica XMM & Chandra NuSTAR NuSTAR ANTARES	DAMPE	RGO (2017) 011) T-1	JWST		(IXPE (XAI (SVOM (SVOM (I I T-2 (ARCA)	ELT (full ope RM incl. soft gam] GO India—)	ma-ray + opt	& TMT (time	GMT GMT eline less clean (ATHENA elements)
HST Swift (incl. UV/optica XMM & Chandra NuSTAR NuSTAR INTEGRAL Fermi HAWC Advance Journes Antares JHE Cosmic Rays	DAMPE	C (2017) 011) T-1	JWST		(IXPE (XAI (SVOM (SVOM (I I I I I I I I I I I I I I I I I I I	ELT (full ope RM incl. soft gam] GO India—)	ma-ray + opt	& TMT (time	GATTERST GMT eline less clear (ATTERNA elements) (ATTERNA elements) (ATTERNA (ATTERNA (ATTERNA (ATTERNA (ATTERNA)

Sensitivy comparisons

Instruments : CTA

- 2 sites selected: North (La Palma, Spain); South (Paranal, Chile)
- 3 Telescope sizes
- Increased sensitivity : detection of new supernova remnants, star forming regions, superbubbles and binaries. Young remnant such as SN1987A and G1.9 is a key science topic
- Excellent angular resolution : perfect for morphologically-resolved spectral analysis of extended sources such as SNRs or the diffuse emission of the Galactic Center or star forming regions
- Energies up to 100 TeV in South Site : PeVatron search and constraints on Emax for different source types
- Increased FoV and Survey capabilities : ideal for new source detections and PeVatrons search

Instruments : HAWC & LHAASO (I)

LHAASO detectors:

- \cdot air shower array of 1 km2
- . 75 000 m2 Water Cherenkov Detector Array (WCDA)
- 12 Wide-field Cherenkov telescopes (WFCTA)
- Infilled shower core detectors

HAWC:

300 water tanks on an era of 20 000 m2 at 4100 m $\,$

Completed since March 2015 but taking data since August 2013

Instruments : HAWC & LHAASO (II)

HAWC:

- ideal for large scale structures and extended sources such as the Cygnus cocoon, the Westerlund sources or extended remnants
- Ideally suited for transients due to its large field of view and 100% duty cycle : first detection of a nova at TeV energies ? First detection of the Crab nebula flares at TeV energies ?
- Access to very high energy photons for Northern sources

LHAASO :

- will complement CTA at higher energies in a similar way to HAWC
- access to the highest gamma-ray photon energies => PeVatron search, Constraints on Emax via ULs on selected objects might prove useful
- example with the case of Cas A : if PeV protons already escaped, a gamma-ray halo should be visible around the source

Instruments : e-ASTROGAM/AMEGO (I)

Objective : Improve sensitivity by a factor of about 50 in the mostly unexplored energy range 0.3 - 100 MeV (continuum and line detection)

- ideal for « pion-bump » search, looking for proton-proton interaction in supernovae or novae
- Gamma-ray lines : important for nucleosynthesis studies in SNRs but also for the study of LECRs in the Galaxy

Instruments : e-ASTROGAM/AMEGO (II)

- constraints on leptonic/hadronic models from the low energy end of the spectrum ; especially useful in the case of Eta Carinae
- star forming regions, especially Cygnus cocoon is easily detectable : improved angular resolution : helps to separate the diffuse cocoon emission from the sources in this region ; lower energy threshold : extend the cocoon spectrum below 1 GeV, look at spectral variations through the cocoon....and detect OB associations such as the Orion nebula
- Origin of the Fermi bubbles
- pulsar wind nebulae : constraints on the maximum energy reached....
- => These instruments will be crucial for cosmic-ray physics

Summary

- There is an incredible diversity in the Galactic gamma-ray sky : many sources, many source classes => particle acceleration is much more widespread than would have been considered a decade ago

- Increased sensitivity and angular resolution require more sophisticated models : taking into account the evolution of the shock and the environment

- A MWL synergy is crucial ; MeV sky is still barely known while a large number of CR topics can be treated in this energy band

« It's a great time for gamma-rays. In terms of mapping gamma rays, we have barely opened our eyes. » E. Hays

