Cosmic Rays streaming instabilities : Simulations & Experiments

Loïc Nicolas (LPP/LERMA), Andrea Ciardi (LERMA), Julien Fuchs (LULI), <u>Roch SMETS</u> (LPP)

CFRCos - Paris, March 2018

Ion Streaming Instability

- Micro-Instability (kinetic process)
- Free energy : the beam energy
- Low ω (extended MHD modes)
- Threshold instability with $\omega_{\max}(k_{\max})$
- Results in pitch-angle scattering (QL theory)
- Slowing down of the beam
- Heating of the main and/or beam
- Growth of temperature anisotropy

3 unstable modes (EM - circularly polarized) Gary 1993

Linearized Vlasov equation with k along B_0 field :

- population 1 : "main" (ISM plasma)
- population 2 : "beam" (CRs) distributions

Right-resonant Non-resonant

Left-resonant

Right-resonant mode Kulsrud & Pierce 1969

- mode with lowest thresold for cold proton beam
- Right-hand polarized (positive helicity) along $+V_b$
- Most unstable mode with $\omega_r \sim \gamma$
- Growth rate in the cold limit

$$\frac{\gamma}{\Omega_p} = \left(\frac{n_b}{2n_T}\right)^{1/3}$$

• $k_{\max} = o(c/\omega_p)^{-1}$: asymptotically goes to whistler mode

- Beam protons are resonating :
 - pitch-angle diffusion of beam protons (QL theory)
 - heating of protons from main & beam

Right-resonant mode

• 3 phases : growth, saturation (overshoot) & relaxation

 \rightarrow Effects of magnetic fluctuations ?

Non-resonant mode Bell 2003

- This is a fluid-like mode (close to firehose mode)
- Needs a dense/fast beam

 \longrightarrow Can dominate the R-resonant mode : $\frac{\gamma}{\Omega_p} = \frac{n_b}{2n_T} \frac{v_b}{v_A}$

Left-resonant mode

Needs a very hot beam...

- \bullet Negative helicity, along $+\mathbf{V}_b$
- Proton beam resonating

Effects of collisions

- Collisions do not modify the instability features
- Can slow down the beam and ease energy transfers

Effects of collisions

For a mixed case : R-resonant & non-resonant

 \rightarrow Growth of δB depends on the colliding particles

Experimental Set-up

- Magnetic field from external coils (LNCMI)
- Gas/plasma produced by the nano laser
- Beam produced by the pico laser (TNSA)

Experimental features

- Gas or Plasma of the "main" :
 - pre-ionized by the pico laser & e^- from the beam
 - ionization rate $\sim\,10^{-2}-10^{-3}$
 - can be ionized by the nano laser (inverse Bremsstrahlung)
- Proton beam by TNSA mechanism :
 - large energy dispersion
 - spectral shape can eventually be modified

 $\rightarrow n_b/n_m$ vary with distance from beam to gas : $10^{-1} \ 10^{-4}$ $\rightarrow v_b$ vary with the pico intensity (up to 10MeV)

Comparison of parameters

Parameters	HEDP	ISM
Magnetic field (T)	20	3×10^{-10}
main density (m^{-3})	$10^{22} - 10^{25}$	$10^3 - 10^4$
beam density (m^{-3})	$10^{19} - 10^{21}$	10^{-4}
main temperature (ev)	10 - 50	10 ⁴ - 10 ⁵
beam temperature (MeV)	0.1 - 10	1 - 100
mean free path (m)	10^{-2}	
Beta parameter (main)	$10^{-3} - 1$	1
Beta parameter (beam)	$10^{-2} - 1$	1
Ion gyroperiod (s)	5×10^{-10}	3×10^1
Proton skin depth (m)	7×10^{-5}	7×10^{6}
Alfvén speed (m.s $^{-1}$)	2×10^{5}	2×10 ⁵

Most unstable mode : non-resonant ?

In the cold limit :

$$\frac{\gamma_{RR}}{\gamma_{NR}} = 2\left(\frac{m_m n_m}{m_b} \frac{n_m}{n_b}\right)^{2/3} \frac{v_A}{v_b} = 1 - 25$$

• mean free path > system size

• $v_b \sim 3v_A$

• total time of experiment : up to 50 gyroperiods

Collisionality of the beam

14

Proton beam in magnetized vacuum

- Energy cutoffs : Thomson parabola & pico intensity
- \bullet With B : effects of hot magnetized e^-

Proton beam in magnetized gas

- Without B : no interraction with neutral gas
- With B : ionization of background for instability ?

Proton beam in magnetized plasma

- Without B : interraction with the plasma ?
- With B : same cutoff & clear bunching

Concluding remarks

- EM ion streaming instabilities : 3 modes
- Kinetic structure of ionized ISM & CR are to be clarified
- Effects of collisions are numerically importants
- \bullet Role in growing δB & slowing down/heating the beam
- Lab experiments are promizing (add diagnostics)
- Need simulations to decifer data from experiment