Numerical simulations of particle acceleration in astrophysical plasmas

Fabien CASSE

Laboratoire Astroparticule & Cosmologie (APC)

Atelier CFRCos 26-28 mars 2018

USPPC Université Sorbonne Paris Cité

High-energy particles sources

Theoretical frameworks

- In low- σ systems, acceleration is likely to arise from the interaction between suprathermal particles and strong <u>shocks</u> via the electromagnetic field.
- In high- σ systems, <u>magnetic reconnection</u> is also a plausible way to energize particles.

Basics of Particle-In-Cell simulations

- \rightarrow In PIC simulations, particles are moved solving motion equations of **EVERY** particles including the electromagnetic force (Boris pusher).
- EM field is time advanced at vertices of a regular grid solving the Maxwell equations (Yee algorithm)
- ➡ Very noisy method so handle with great care !!

Particle acceleration: PIC applications

- •Particle-In-Cells (PIC) approach is the most accurate numerical description of the interaction between particles (thermal and non-thermal) and EM field
- State of the art PIC simulations: <10¹¹ particles and 3000³ cells (~ x10 TBytes data and running time ~few months on 10,000 cores).

- ➡ Pair plasmas (ultra and mildly relativistic)
- Mass ratio = 1 and all particles have similar velocities
- **OK** for any magnetization
- Relativistic electron/ion plasmas velocity of electrons ~ velocity of ions
- **OK** for any magnetization
- Non relativistic electron/ion plasmas are often very low-σ and thermal velocity of electrons >> thermal velocity of ions

PIC simulations of relativistic shocks

- Pair plasma shocks
- Electron/ion shocks

DSA in unmagnetized pair plasma

DSA-SDA & magnetic obliquity in pair plasmas

★ In highly magnetized pair plasma shock (σ =0.1), only subluminal shocks are efficient particle accelerator

DSA-SDA & shock magnetization

★ Low- σ perpendicular pair shocks (σ <10⁻³) are efficient particle accelerator

Acceleration at pair shocks

- Relativistic shocks are likely to be superluminal.
- Some of them are likely to be high- σ shocks (PWN,AGN Jets, ...)
- Magnetic reconnection may contribute to particle acceleration.

Pulsar Wind Nebulae

- Striped Wind model provides a description of PWNe (Lyubarsrsky & Kirk 2001, Petri & Kirk 2005, Petri & Lyubarsky 2007, ...)
- ➡ RMHD simulations provides the overall magnetic structure of the outflow (Mixed MPI code RMHD finite volume & spectral)

Pétri (2012)

Magnetic reconnection in a striped wind

- Magnetic reconnection in a pair plasma has been adressed in the context of the striped wind near the terminal shock.
- ➡ Hard particle spectrum is obtained (p~1.5) and max energy depends on magnetization.

Magnetic reconnection in relativistic plasmas

- → γ -ray flares in PWNe require p<2 spectrum !
- Magnetic reconnection is also studied in electron/ion relativistic plasmas

(2014a,b)

al.

et

Melzani

Particle acceleration in PWNe

- Magnetic magnetosphere of pulsar are now been addressed using global PIC simulations
- ➡ MPI PIC Zeltron code (logarithmic scale Cerutti et al 2013)

PIC simulations of relativistic shocks

- Pair plasma shocks
- Electron/ion shocks

Acceleration in relativistic e-p+ shocks

^cironi & Spitkovsky (2011)

Acceleration in relativistic e-p+ shocks

Sironi & Spitkovsky (2011)

Acceleration at electron/ion shocks

Simulations of particle acceleration in non-relativistic shocks

- Hybrid PIC
- Mixing PIC & MHD

Basics of Hybrid PIC

- ➡ In Hybrid PIC simulations, particles are moved solving motion equations but electrons are considered as a massless and temperatureless fluid
- ➡ EM field is time advanced using an Ohm's law and Maxwell-Faraday equation.
- ➡ Ion current is used to compute the electric field (e.g. Gargaté et al 2007)

$$\vec{E} = -\vec{V}_{ion} \times \vec{B} + \frac{\vec{\nabla} \times \vec{B}}{n_{ion} e \mu_o} \times \vec{B}$$

Numerical constraints

- Spatial resolution $\Delta x \sim Ion$ skin depth
- Temporal resolution imposed by ion CFL condition or gyro-period in high- σ plasmas.

DSA in parallel non-relativistic shocks

- → Use of Hybrid PIC code (2D3V) provided the first self-consistent description of the DSA in non-rela 1000 1250 1500 1750 250 500 750 2000 $t[\omega_c^{-1}]$ In parallel superal consistantly generate : 10
- ➡ Energy spectrum w (*ξ*_{CR}~10-20%).
- ➡Spatial diffusion consi:

10⁰

10

10

10-3

 10^{-1}

2000

 $p^{i}f(p)$

(2014a,c)

Spitkovsky

Caprioli &

DSA in perpendicular non-relativistic shocks

- ➡ In perpendicular non-relativistic shocks the ion acceleration efficiency drops to zero for Hybrid -PIC simulations.
- ➡ No magnetic turbulence nor particle acceleration is obtained in high obliquity shocks (*θ*>50°) !

(2014a)

Spitkovsky

Caprioli &

Basics of Particle In MHD Cells

- ➡ MHD describes the evolution of thermal fluid and EM field while PIC takes care of supra-thermal particles <u>only</u> (Bai et al 2015, van Marle et al 2018).
- ➡ Modified Ohm's law provides E field incorporated in MHD AND Boris pusher.
- ➡ Requires particle injection recipe but enables large-scale system description.

Non-relativistic shocks: PI[MHD]C approach

- ➡ Following full PIC injection recipe at the shock one recover all results from Hybrid PIC simulation on parallel shocks.
- ➡Bell's non resonent streaming instability is at work in the precursor.

van Marle et al (2018)

PI[MHD]C : near-perpendicular shocks

- Large scale Bell's instability leads to corrugation of the shock front
- DSA and magnetic amplification is triggered by the corrugation of the shock
- SDA is pre-heating particles before entering DSA.

van Marle et al (2018)

Some issues & open questions

Over the last decade full-PIC simulations brought new insight on particle acceleration in astrophysical environments.

- → **Parallel shocks** are efficient particle accelerators
 - Relativistic parallel pair shocks are mediated by Weibel-like instabilities but such turbulence relaxes over a short distance:
 - → <u>How to accelerate higher energy particles</u> ? <u>How to address</u> <u>larger simulations (huge cost in full-PIC)</u> ?
 - ⊙ NR shocks: Ion injection in DSA process is not yet clearly understood
 - \odot NR shocks: Electron injection is efficient for low M_A (SDA, SSA, Whistler)

→ How to heat electrons in order to make them entering DSA in strong shocks ?

Some issues & open questions

Perpendicular shocks

◦Low- σ perpendicular relativistic shocks can trigger DSA through Weibel mediated shock → How to accelerate higher energy particles ?

 \circ High- σ perpendicular relativistic shocks cannot trigger DSA.

→ <u>Is magnetic reconnection able to trigger particle acceleration</u> and the turbulence needed to drive DSA ?

⊙ Discrepencies arise between Hybrid PIC and PI[MHD]C simulations on NR perpendicular simulations (e.g. Caprioli et al 2018). <u>Can ion</u> <u>injection be adressed including electrons (full-PIC) over long time-</u> <u>scale ?</u>

◦ We are in need of simulations linking full-PIC simulation on limited spatial extension (shock vicinity) to larger MHD-Kinetic describing the shock precursor.

➡ We have a lot to learn from Laser-plasma community as they have a huge experience with PIC and other type of simulations.

CR french community on the numerical side

- ➡ GENCI = Grand Equipement National de Calcul Intensif —> Regrouping IDRIS (CNRS), TGCC (CEA) and CINES (Universités).
- ➡ PNHE's tcompting time grant represented 5% of total astrophysical computing time in 2016 (but rising).
- French numerical codes for particle acceleration :
- Full-PIC: CALDER, SMILEI, ZELTRON, Apar-T
- PI[MHD]C: mPIC-AMRVAC
- MHD bi-fluid (thermal+CR) : RAMSES

CALDER (Vanthieghem et al., IAP/CEA)

Simulation numérique & PNHE

- Le PNHE a soutenu l'activité de simulation au travers du financement de projets/collaborations dont c'est quelque fois le seul financement.
- Ouverture à d'autres communautés plasma grâce à l'organisation de conférences (ex: Workshop sur accélération de particules avec communauté Laser-Plasma et la communauté plasma magnétosphériques).
- Appui du PNHE pour l'organisation d'une école sur les techniques numériques en HE —> Intérêt pour former à l'utilisation de codes des étudiants en thèse pour développer des liens simulationsmodélisation-observations.
- ➡ Nécessité de maintenir un savoir-faire en accord avec les innovations technologiques (ex. GPGPU) —> Formations professionnelles au calcul scientifique financées par le PNHE (Maisons de la Simulation) ?

3D PI[MHD]C

van Marle et al (in prep)