Particle acceleration in supernova remnants X-ray, radio and optical

Test what happens precisely at the shock

□ X-ray synchrotron emission

□ Magnetic field inclination

□ Search for a precursor ahead of the shock

• Optical constraints

Pending questions

- □ How **efficient** is cosmic-ray acceleration in SNRs? What is the energy density of accelerated particles?
- □ What is the **maximum energy** of accelerated particles?
- □ How large is the magnetic field? Is it amplified? Is it very turbulent? What is its spectrum?
- □ What is the **geometry** of acceleration with respect to the magnetic field?

Let us see what we can learn from observations

Constraints on global parameters

Astronomical

- □ Age (historical SNRs)
- Distance (absorbing column, stars, angular vs actual velocity)

Angular size $(E/n_0, t_0)$

Constraints on global parameters

Astronomical

- □ Age (historical SNRs)
- Distance (absorbing column, stars, angular vs actual velocity)

D Angular size $(E/n_0, t_0)$

Spectroscopic

- **D** Doppler width (optical): shock velocity $(E/n_0, t_0)$
- **D** Thermal X-ray emission (n_0)
- □ Synchrotron radio emission level (B_0 , $W_{CR} \times K_{ep}$)
- \square π^0 GeV or TeV emission level (W_{CR}, n₀)
- □ Inverse Compton TeV emission level ($W_{CR} \times K_{ep}$)

Constraints on global parameters

Astronomical

- □ Age (historical SNRs)
- Distance (absorbing column, stars, angular vs actual velocity)

D Angular size $(E/n_0, t_0)$

Spectroscopic

- **D** Doppler width (optical): shock velocity $(E/n_0, t_0)$
- **\Box** Thermal X-ray emission (n₀)

□ Synchrotron radio emission level (B_0 , $W_{CR} \times K_{ep}$)

 \Box π^0 GeV or TeV emission level (W_{CR}, n₀)

□ Inverse Compton TeV emission level ($W_{CR} \times K_{ep}$)

Morphological

- **\Box** Expansion over time: shock velocity (E/n₀, t₀)
- \Box X-ray synchrotron rim width (B₀)

 \Box Width between ejecta and blast wave (W_{CR}, B₀)

Spectral information

Giordano et al 2012, ApJ 744, L2, Tycho

$$dN/dE \propto E^{-p} \exp(-E/E_{\text{max}})$$

$$F_{\nu} \propto \nu^{-\alpha} \exp\left(-\sqrt{\nu/\nu_{\text{max}}}\right), \qquad \alpha = (p-1)/2$$

$$\nu_{\text{sync}} = 1.82 \times 10^{6} B_{\text{mG}} E_{\text{erg}}^{2} \text{ GHz}$$

- π⁰ following p-p collisions in GeV range (proportional to gas density)
- Inverse Compton on CMB (or local photons) in TeV range
- Synchrotron from radio to X-rays cutoff at **maximum electron energy**
- F γ / Fsync ~ U_{CMB}/U_B = 1 for B = 3.27 μ G
- Thermal (continuum + lines) in Xrays

Synchrotron spectrum in young SNRs

- ✓ Normalization and slope (α around 0.5) anchored in the radio
- ✓ X-ray slope always steeper (around 1.5), constrains v_{max}
- ✓ Cannot work as such over full SNR (space-dependent due to cooling)
- ✓ Should be applied **precisely at the shock**
- \checkmark Difficult to extract exactly the same area in the radio and X-rays
- \checkmark Very difficult to extract slope over small regions in the radio
- ✓ Overall slope is often fitted to X/radio ratio
- \checkmark Complications due to modified shocks (concavity) can exist
- ✓ Cutoff may not be exponential (cooling, diffusion not Bohm)
- \rightarrow Not so easy quantitatively !

Cut-off frequency shape

Miceli et al 2013, A&A 586, A80

XMM-Newton Large Program on SN 1006

Attempt at quantifying cooling effect Curvature of X-ray spectrum should be able to tell, because **cooling predicts a steeper cutoff than escape**

Requires large energy range

Comparison between SRCUT (escape) and Zirakashvili & Aharonian 2007 (cooling)

4 areas along SN 1006 bright limbs

Rather subtle effect

Radio point too low for SRCUT

Should be redone more carefully

Ambient density from thermal emission

Surprisingly **difficult** to detect thermal emission of ambient medium.

Implies low density in most young SNRs

Morphology: expansion

Sharp edge offers a very accurate way of measuring expansion of a few arcsec over 10 years in young SNRs. Has been done for many.

Particularly powerful if distance is known (gives **shock velocity**)

Morphology: sharp non-thermal X-ray rims

- ✓ Synchrotron losses → emission shifted out of the X-ray range not far behind the shock
- ✓ Cooling time $t_{cool} = 6.37 \times 10^8 B_{mG}^{-2} E_{erg}^{-1}$ s $t_{cool} = 5.5 \times 10^7 B_{mG}^{-3/2} v_{keV}^{-1/2}$ s $l_{dif} = \sqrt{\kappa_d t_{cool}} = 1.2 B_{mG}^{-3/2}$ mpc

Requires magnetic field amplification (Lucek and Bell 2000, MNRAS 314,65)

Morphology: sharp non-thermal X-ray rims

- ✓ Synchrotron losses → emission shifted out of the X-ray range not far behind the shock
- ✓ Cooling time $t_{cool} = 6.37 \times 10^8 B_{mG}^{-2} E_{erg}^{-1}$ s $t_{cool} = 5.5 \times 10^7 B_{mG}^{-3/2} v_{keV}^{-1/2}$ s $l_{dif} = \sqrt{\kappa_d t_{cool}} = 1.2 B_{mG}^{-3/2}$ mpc

Radio synchrotron not as sharp

Radio profile key observable to test whether turbulent *B* decays downstream (Pohl et al. 2005, ApJ 626, L101)

Better radio data would be very valuable

Requires magnetic field amplification (Lucek and Bell 2000, MNRAS 314,65)

Constraints on diffusion as a function of energy

Extract rim width over 3 energy ranges: 0.7 - 1, 1 - 2, 2 - 7 keV

Should decrease in **advection**-dominated regime as $E^{-0.5}$, then switch to **diffusion**-dominated regime depending on turbulence index α

In nearly all cases, width is measurably less at higher energy

But at places goes down faster than E^{-0.5}!

Constraints on diffusion as a function of energy

Extract rim width over 3 energy ranges: 0.7 - 1, 1 - 2, 2 - 7 keV

Should decrease in **advection**-dominated regime as $E^{-0.5}$, then switch to **diffusion**-dominated regime depending on turbulence index α

In nearly all cases, width is measurably less at higher energy

But at places goes down faster than E^{-0.5}!

Probably not quite good enough to be a measure of the turbulence spectrum, but worth pursuing

Going to higher energy would be excellent, but requires a very sensitive high-resolution instrument above 10 keV

Ressler et al. 2014, ApJ 790, 85

Radial structures

Eriksen et al 2011, ApJ 728, L28

- Stripes parallel to shock velocity
- Definitely non-thermal emission
- Azimuthal spacing (0.15 pc or so) corresponds to gyroradius at energy of 2 10^{15} eV for B = 30 μ G (amplified upstream field from Cassam-Chenaï et al 2007)
- Looks like the filamentary instability reported in simulations by Caprioli and Spitkovsky 2013 (ApJ 765, L20)

Magnetic orientation: radio polarization

Mostly radial in the limbs (NE and SW), tangential in SE

Much larger polarized fraction in SE (ordered field) than limbs (turbulent)

Simpler interpretation: external field is oriented NE - SW

Magnetic orientation: X-rays

Rothenflug et al 2004, A&A 425, 121: if the bright limbs were an equatorial belt, nonthermal emission should also be seen in the interior

Magnetic orientation: X-rays

Rothenflug et al 2004, A&A 425, 121: if the bright limbs were an equatorial belt, nonthermal emission should also be seen in the interior

Assumes that B is more or less random

If **dominantly radial turbulence** up to the shock (not due only to RT) then **synchrotron** emission from the center is **suppressed** and equatorial geometry is possible (West et al 2017, ApJ 849, L22)

In older SNRs statistical arguments (Gaensler 1998, ApJ 493, 781) favor equatorial belts and magnetic compression ($\Delta B/B \ll 1$)

Observed $F_{in}/F_{out} < 0.5 \rightarrow \text{polar caps}$ • $0.8 - 2 \text{ keV}: 0.300 \pm 0.014$

• $2 - 4.5 \text{ keV}: 0.127 \pm 0.074$

Optical Balmer lines

Ghavamian et al 2002, ApJ 572, 888 Morlino et al 2013, ApJ 768, 148 (models)

- ✓ The width of the broad component gives the **proton temperature**. The ratio between the flux in the narrow and broad components depends on the **electron temperature**. In SN 1006, those observations give $T_p \sim 10$ keV and $T_e \sim 0.7$ keV.
- ✓ If shock velocity can be measured (proper motion + distance), can tell power lost to CR acceleration. No indication that it is large.
- ✓ Applicable only if **sizable neutral fraction**

Shock precursor in X-rays

THE ASTROPHYSICAL JOURNAL, 781:65 (18pp), 2014 February 1

Observational summary

Large body of observations:

- □ **Historical SNRs** are the best opportunity for detailed modeling
- □ X-rays: rims (total B field), cutoff (diffusion coefficient), variability (both), azimuthal variations (dependence on B inclination)
- **Optical:** Balmer lines (proton temperature, **precursor**)
- □ Radio: polarization, B decay (comparison to X-rays). Probably best prospects for improvement in near future
- □ Also: SNe radio light curves and spectral hardening, LE CRs effect on chemistry and neutral Fe K line outside SNRs, distance between shock and ejecta (shock compression)

Backup

Cut-off frequency and cloud interaction

Miceli et al 2014, ApJ 782, L33

XMM-Newton Large Program on SN 1006

Interaction with a small cloud

Cutoff frequency decreases at interaction point

Consistent with $v_{cut} \alpha V_{sh}^2 \alpha 1/\rho$ in cooling-limited regime

5.55e-05 5.88e-05 6.87e-05 8.53e-05 1.08e-04 1.38e-04 1.75e-04 2.17e-04 2.67e-04 3.23e-04 3.86e-04

Sharp rims at the forward shock. Known cases

Compression ratio fixed to 6 (rough estimate from non linear diffusive shock acceleration)

 $\mathcal{E}_{B} = \frac{B^{2}}{8\pi \rho V_{\rm sh}^{2}}$

Equating 4.6 l_{dif} ($l_{adv} < l_{dif}$) and the projected FWHM gives B (downstream).

		Dist.	Speed	Projected FWHM	Age	Density	В	$\epsilon_{\rm B}(\%)$	
		kpc	km/s		yr	cm ⁻³	μG		
Cas	S A	3.4	5200	0.03 pc (2") at 5 keV	320	1?	300	>1.4	
Kepler (SE)		4.8	5400	0.07 pc (3") at 5 keV	400	0.10	180	> 2	
Tycho		2.3	4600	0.05 pc (4") at 5 keV	430	0.20	250	> 3	
SN 1006		2.2	4900	0.20 pc (20") at 2 keV	1000	0.05	90	1	
RX J1713		1.0	3500	0.19 pc (40") at 2 keV	2000 ?	0.02	90	6?	
RCW 86		2.5	2700 ?	1.20 pc (100") at 2 keV	1800 ?	0.10	24	0.1 ?	
Vela Junior		0.75	2000 ?	0.18 pc (50") at 5 keV	3000 ?	0.05 ?	100	8?	
	Requires	Requires magnetic field amplification (Lucek and Bell 2000, MNRAS 314,65) but not equipartition with the accelerated protons							

Sharp rims at the forward shock. Radiative interpretation

Three effects combine to set the observed width of the emitting region behind the shock:

- Advection (Vink and Laming 2003, ApJ 584, 758; Bamba et al. 2003, ApJ 589, 827) depends on the shock speed and the compression ratio
- ✓ Diffusion (Berezhko et al. 2003, A&A 412, L11; Yamazaki et al. 2004, A&A 416, 595) assuming Bohm limit
- ✓ Projection (Berezhko et al. 2004, A&A 419, L27)

Shock precursor: radio

Accelerated particles should diffuse ahead of the shock, leading to non-thermal emission

$$l_{\text{diff}} = \sqrt{2D\tau_{\text{acc}}} \approx \sqrt{\frac{2r(r+1)}{3(r-1)}} \frac{cE}{eB_{\text{turb}}V_{sh}} \qquad V_{\text{sync}} = 1.82 \times 10^{18} B_{\text{tot}} E^2 \quad \text{Hz}$$

$$l_{\text{diff}} \approx \frac{9.75 \times 10^{10} \text{ cm}}{B_{\text{turb}} V_{sh}} \sqrt{\frac{\nu_{\text{sync}}}{B_{\text{tot}}}} < 0.1 \text{ pc}$$

Not seen in the radio ($v \sim GHz$) => B_{turb} > 10⁻² μG => stronger magnetic turbulence than in ISM (Achterberg et al. 1994, A&A 281, 220)

More stringent in X-rays (v_{sync} 10⁸ times larger)

Optical Balmer lines

- IFU on VLT/VIMOS
- Unresolved (ie ionization occurs over a size smaller than 1 pixel)
- Very large **scatter** on ratio of broad to narrow fluxes
- Large number of points below (ie broad line not bright enough) what is expected for charge exchange and ionization behind the shock
- Argue that part of the narrow line comes from precursor
- Require closer distance than usual
- Interpret shock as coming from **only one side of the cloud**. Should come from both sides, and would change the analysis a lot

Nikolic et al 2013, Science 340, 45

